If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+35y+22=0
a = 3; b = 35; c = +22;
Δ = b2-4ac
Δ = 352-4·3·22
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-31}{2*3}=\frac{-66}{6} =-11 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+31}{2*3}=\frac{-4}{6} =-2/3 $
| 4-3x=(1+8x) | | 114=5y+14 | | -2x+4x=8x-2x | | 3P-50=300-2p+4*25 | | -3x-2=4x+9 | | 3w-17=37 | | 1/3x+45=3x-35 | | -85+x=128 | | 2.2x+1.8x+5=15 | | 3x=2=8 | | 2(x/2+4)=5x-5 | | 2(1-x)+3x=-4(x+2) | | 92-w=209 | | X-(x+180)=173.4 | | 4x+7x=10x | | 2x3-16=0 | | X-x+173.4=180 | | 4x^2-90=2x | | 3x+(-22)=8 | | 5^(-3x-1)=25 | | 3x+-22=8 | | -x+22=283 | | X-x+180=173.4 | | 17r+5=5r+35 | | X+x-180=173.4 | | X+x-173.4=180 | | 75=258-u | | 4x=3/2x+5 | | d=12-(11±4d) | | x2=−16/ | | x-86=72 | | -5x-5=4x+9 |